Csermely Péter
20
05
06
06
Előadó
Ismereteink egy igen jelentős hányadát fény segítségével szerezzük meg. A fény hullámhossza viszont határt szab az optikai rendszerek felbontóképességnek, a láthatóságnak. Egy "újfajta fény" azonban megteremtette annak lehetőségét, hogy ezen a korláton átlépjünk. Olyan optikai elemeket és chipeket hozhatunk így létre, amelyek akár le is körözhetik a jelenleg használt elektronikus chipeket nagyobb elemsűrűségükkel, sebességükkel és még egy sor előnyös tulajdonságokkal.
Electromagnetic radiation segments, falling into various wavelength realms, inform a significant portion of our knowledge about the world. Visible light is only a rather narrow segment of the broad spectrum available, yet its significance to us is extraordinary, since it is this range that affects the sensitivity of our eyes. The lecture explores the importance of light to various areas of life, from life processes, to the visual arts, through to scientific research. In addition, we can learn about the way light transpires, the characteristics it displays, and the ways in which electromagnetic radiation helps reveal the secrets of our universe. Light also plays a vital part in mankind's penchant for miniaturization. The discovery of a new type of light - surface plasmons - opened new horizons where the wavelength of light no longer delimits the resolution capacity of the optical system. This allows for the production of optical units and chips that would compare favourably to the electronic ones currently in use, and may well initiate a fundamental paradigm shift in information technology, among other things. The lecture describes this new type of light; then, in closing, it explores the ways in which we can use light in the production of computers that are based on the use of atomic components.
A minket körülvevő és a bennünk lévő rendszerek - nagyobb molekuláink, sejtjeink, szerveink, baráti társaságaink, munkahelyünk, a társadalom, amelyben élünk, és az egész Föld - mind-mind hálózatok. E hálózatok hihetetlen módon egyformán viselkednek. Közös vonásaikat, stabilizálásuk módjait mutatja meg az előadás, amely izgalmas utazásra hív az evolúció, a rák, az öregedés, az emberi nyelv, a számítógépes programok, a gazdasági rendszerek és a történelem világába.
The initial part of the lecture gives a concise summary of the three major general features of networks: small-worldness, scale-freeness and nestedness. Weak links stabilize all complex systems. The main part of the lecture shows the validity of this concept in all areas of science. Water-induced weak links in and around proteins help them to change. Protein-induced weak links help the changes of cells and their evolution. The symmetry of our face reflects the internal stability level of our cells. A beautiful, almost symmetrical face shows an optimal mix of stability and change. A forest is a tight ecosystem, where trees are weakly linked and supported by fungi below the earth. A society is stabilized by the small talk and gossip of women. Vice versa, women become psychically stabilized by the cooperative weak links they build. Weak links are necessary for innovations in a society and may only develop if the society has tolerance and trust. Weak links are our investment for the future.
20
05
09
19
Előadó
Albert Einstein nevét általában a relativitáselmélettel kapcsolja össze a közvélemény, sokan nem is sejtik, hogy milyen sokoldalú szerepet játszott a 20. század fizikájának és tudományos gondolkodásának alakulásában. Hogy megértsük Einstein munkásságának forradalmi voltát, az előadás röviden bemutatja a fizika helyzetét a 19. század végén, majd áttekinti azokat a területeket, ahol Einstein eredményei új utakat nyitottak a fizika előtt.
The name of Albert Einstein is usually associated by the public with the theory of relativity. There are not many who know he played such a manifold role in the development of physics and scientific thought in the 20th century. In order to understand the revolutionary character of Einstein's works, this lecture will give a short presentation on the status quo in physics at the end of the 19th century, and reviews the areas where the results of Einstein opened up new paths for physics. His discoveries were decisive in the initiation and development of quantum theory and have their impact even today, not only on the scientific way of thinking, but also in the field of applications. The vision created by quantum theory on microparticles, namely their dual- and particle-wave character, is based on the discovery by Einstein of the particle of light, the photon. It only turned out twenty years later, when quantum mechanics was created, that this applies to microparticles in general as well. It is on the basis of his works that the discharge of nuclear power and the physical theory of lasers are based, and the general theory of relativity provides the basis for modern research in physics and cosmology about the structure and development of the Universe.